
Received 2 December 2021; revised 27 February 2022; accepted 14 March 2022. Date of publication 23 March 2022; date of current version 4 April 2022.

Digital Object Identifier 10.1109/OJCAS.2022.3161873

Self-Repairing Carry-Lookahead Adder With
Hot-Standby Topology Using Fault-Localization

and Partial Reconfiguration
MUHAMMAD ALI AKBAR , BO WANG (Member, IEEE), AND AMINE BERMAK (Fellow, IEEE)

Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar

This article was recommended by Associate Editor J. Viraraghavan.

CORRESPONDING AUTHOR: M. A. AKBAR (e-mail: maakbar@mail.hbku.edu.qa)

This work was supported by the National Priorities Research Program (NPRP) from the Qatar National Research Fund
(a member of Qatar Foundation) under Grant NPRP13S-0212-200345.

ABSTRACT In this paper, a self-checking and -repairing carry-lookahead adder (CLA) is proposed
with distributed fault detection ability. The presented design with self-checking and fault localization
ability requires an area overhead of 69.6% as compared to the conventional CLA. It can handle multiple
faults simultaneously without affecting the delay of conventional CLA, with the condition that each
module has a single fault at a time. The repairing operation utilizes the hot-standby approach with partial
reconfiguration in which the faulty module would be replaced by an accurately functioning module at
run-time. The proposed self-repairing adder with high fault coverage requires 161.5% area overhead as
compared to conventional CLA design which is 35.3% less as compared to the state-of-the-art partial
self-repairing CLA. Moreover, the delay of the proposed 64-bit self-repairing CLA is 40.7% more efficient
as compared to conventional ripple carry adder.

INDEX TERMS Self-repairing, fault localization, self-checking adder.

I. INTRODUCTION

THE REALIZATION of digital circuit in the deep sub-
micron process comes at the risk of losing reliability,

due to complexity, thermal-cycling, and decreased power
supply [1]–[3]. This is in addition to the effect of dif-
ferent environmental conditions that further increase the
vulnerability of digital systems [4]. Therefore, the need for
self-checking hardware design has become inevitable. To
facilitate fault detection, the concept of totally self-checking
was introduced [5], based on which different approaches
have been reported in the literature. These approaches mainly
rely on hardware- or time-based redundancy. In the case
of hardware redundancy, more than one concurrently work-
ing hardware produces either the same, complemented or
encoded output. These outputs will be compared to iden-
tify potential faults. For time redundancy, single hardware is
used to produce correlated outputs in different intervals; the
comparison of these delayed outputs will be used to iden-
tify potential faults. In both cases, multiple copies of output

are used to determine the fault. It has been argued that the
self-checking design should also involve fault localization
to minimize the cost of fault repairing [6]. The presence of
fault detection without recovery cannot fulfill the demand for
reliable execution in current digital systems. Thus, built-in
self-repair is becoming particularly pertinent to current semi-
conductor technology [7]. The adoption of this approach will
ensure that all the system’s key components are reliable and
error-free. One of such key components in digital systems
is the adder, which often appears in critical signal paths [8].
Therefore, the introduction of adders with built-in self-repair
capability can significantly improve the reliability of digital
systems.
Among the fastest adders used in digital systems is the

Carry-Lookahead Adder (CLA). For CLA, the summation
circuitry for each bit can “lookahead” for their respective
incoming carry bit. It means that each full adder in the cas-
cade can run independently without waiting for the carry out
of the preceding adder. The speed is therefore significantly

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

50 VOLUME 3, 2022

HTTPS://ORCID.ORG/0000-0002-0738-3513
HTTPS://ORCID.ORG/0000-0002-9359-4869
HTTPS://ORCID.ORG/0000-0003-4984-6093

improved, at the expense of hardware overhead. Therefore,
traditional self-checking approaches like double modular or
triple modular redundancy are not feasible for CLA due to
their area overhead. The most common approach for design-
ing self-checking CLA is the parity prediction scheme that
can detect faults in either even or odd number of bits.
In [9], a parity prediction approach was adopted along

with a two-rail code for self-checking CLA. The two-rail
code tests the carry block, whereas the parity prediction
checks the summation outputs. A similar approach of using
parity prediction with duplicated summation block was also
reported in [10]. Besides their drawbacks like area overhead,
fault coverage, etc., these approaches can only detect faults
without recovery or self-repairing.
This is why, a partial triple modular redundancy with

parity prediction approach was adopted for self-repairing
CLA [11] and [12]. An improved design was further reported
in [13], that constitutes two different architectures of the
voter circuit. This design approach provides self-repairing for
the carry generation block using triple modular redundancy,
while a parity prediction-based self-checking approach was
employed for the summation bits. To reduce the area over-
head of triple modular redundancy, a shared logic was
utilized to generate multiple copies of the carry bit. As stated,
the advantage of CLA is that each of its carry bit is gener-
ated independently to reduce the computation time. However,
in [13], each carry block needs to produce copies of the fol-
lowing two carry bits; for example, the block responsible for
producing the ith carry bit (Ci) will also produce redundant of
Ci+1 and Ci+2. Therefore, each carry bit has multiple copies,
and the final carry is generated based on the majority deci-
sion using a voter. It should be noted that the voter produces
dual carry bits; the first one is for the addition, whereas the
second is for computing the parity of the intermediate carry
bits. The adoption of the parity prediction approach further
limits the fault coverage of their design to an even or odd
number of faulty bits. That means its reliability and fault
detection was only ensured partially.
In this paper, we propose a self-checking and -repairing

CLA with distributed fault detection ability. The proposed
design can detect and locate multiple faults simultaneously,
with the condition that each module should have only one
fault at a time. The fault recovery is achieved with a hot-
standby approach in which a spare module replaces the faulty
one. The replacement process is conducted with a novel
partial reconfiguration concept in which the modified input
values update the functionality of the circuits generating the
internal carry bits. The proposed design with self-checking
requires 69.6% area overhead compared to the conventional
CLA without self-checking whereas, the required overhead is
increased to 161.5% for proposed self-repairing CLA with
a single spare module. Notably, the proposed design can
achieve 99.1% reliability for a 64-bit CLA with 16-blocks
where each block has a pair of spare modules and can per-
form 4-bit computation. Compared to ripple carry adder, the
delay efficiency of the proposed self-checking CLA remains

the same as the conventional CLA design, which is 50.9%.
While the delay efficiency of 64-bit self-repairing CLA is
40.7% higher than ripple carry adder.
The remainder of this paper is organized as fol-

lows. Section II describes the proposed self-checking and
-repairing CLA design. Evaluation and comparison with
previous approaches is presented in Section III, followed
by a conclusion in Section IV.

II. PROPOSED SELF-REPAIRING CARRY LOOK-AHEAD
ADDER DESIGN
In this section, the operation of CLA is introduced followed
by the proposed self-checking and -repairing designs.

A. CLA TOPOLOGY AND OPERATION
In CLA, all the internal carry bits are pre-computed in paral-
lel to facilitate its operation [12]. Typically, a CLA consists
of two main blocks. The first block is the carry block (CBL),
which generates the internal carry bits using carry genera-
tor (CG) modules. The second block is the summation block
(SBL) which is responsible for generating the sum-bits using
the sum generator (SG) modules, as shown in Fig. 1(a).
The CBL is designed using the basic concept of carry

propagation and generation. The carry bit will be generated
if both inputs are high (i.e., Gi = ai · bi), whereas the carry
will be propagated if either one or both input bits are high
(i.e., Pi = ai ⊕ bi or Pi = ai + bi). By combining these
two operations, the ith carry bit can be computed by (1). As
inherent to the CLA, each carry bit should be generated in
parallel using independent circuitry. Therefore, (1) is mod-
ified such that each carry bit only depends on the initial
carry-in Cin. For example, the first three carry bits of a 4-bit
CLA can be generated independently using (2) to (4). The
generalized Boolean expression for the ith carry bit is shown
in (5). Note that in conventional non-self-checking CLA, the
generate and propagate bits are computed once for all carry
bits and then shared between them. This logic sharing is
further extended to compute the sum-bits, which are equal
to Pi ⊕ Ci−1 [13]–[14].

Ci = Gi + PiCi−1 (1)

C0 = G0 + P0Cin (2)

C1 = G1 + P1C0 = G1 + P1G0 + P1P0Cin (3)

C2 = G2 + P2C1 = G2 + P2G1 + P2P1G0 + P2P1P0Cin
(4)

Ci = Gi + PiGi−1 + · · · + P0 . . .Pi−1PiCin. (5)

Since each carry-bit is generated using an independent cir-
cuitry, the CBL is the most area-hungry and complex part of
a CLA. Its area overhead and complexity becomes extremely
high as the size of the adder increases. To address this issue,
the block architecture of CLA is widely adopted in which
multiple small-size CLA blocks are repeated to construct an
adder for large input bit-width [13]. As a result, the number
of carry bits generated by each CBL is equal to the block

VOLUME 3, 2022 51

AKBAR et al.: SELF-REPAIRING CLA WITH HOT-STANDBY TOPOLOGY

FIGURE 1. The proposed architecture of (a) Self-checking CLA, (b) along with the module of the carry generator (CG), and (c) sum generator (SG).

size, as shown in Fig. 1(a). The final carry-out bit Cout gener-
ated by each CBL will be used as Cin for the next CBL. The
overall latency will increase because the next block needs
to wait for the preceding block’s result, but the area over-
head and complexity will be significantly reduced. To reduce
computational delay, the carry block should be designed such
that Cin is the last element needed for computation. As soon
as Cin is received from the previous block, the output could
be updated immediately, as seen in Fig. 1(b). The logic cell
implementations in CG vary from CG0 to CG3 depending
on their respective Boolean equations. Meanwhile, except
for the first CBL, each consecutive CBL will generate the
carry-bits with an additional delay of two logic gates, i.e.,
X1 and X2 shown in Fig. 1(b).

B. PROPOSED SELF-CHECKING CLA WITH FAULT
LOCALIZATION
The area overhead of CBL for generating carry-bits in
parallel is so high that any approach using hardware dupli-
cation for self-checking will not be fruitful. Furthermore,
the presence of logic sharing in non-self-checking CLA is
not encouraged in self-checking architectures because any
fault in shared logic will quickly get masked and cannot be
detected or localized.

To address this issue, we propose a hardware-friendly self-
checking and fault localization approach for CLA, in which
the ith sum-bit (Si) and carry-out bit (Ci) respectively gener-
ated by the SBL and CBL, are compared with the ith input
bits ai and bi to determine any potential fault. Its operation
can be summarized as: Si of the SBL and Ci of the CBL will
be equal to each other, if and only if the previous carry-bit
Ci−1 of the CBL and the ith input bits are all equal, that is:

If (ai == bi == Ci−1) then Si = Ci otherwise Si �= Ci.

With the above conditional decision, an equality tester
is required to check whether ai, bi and Ci−1 are equal and
produce a comparison output Eqt(i), followed by a checker to
determine whether a fault happens. For an error-free adder,
if Eqt(i) = 1, Si and Ci must be equal; otherwise they must
be complementary. The Eqt(i) bit can be computed using (6),
and the checker can be implemented by (7). The architecture
of the proposed SG module is shown in Fig. 1 (c). It should
be noted that the sum-out produces the sum-bit while the
gates G1 and G2 are responsible for checking the relation
of Si, Ci and Eqt(i). An error indicator ei for each SG will
then be produced based on the output of G2. The OR gate
(R1) generates the universal error signal Ef , whose value
will be high for all SGs proceeding to the faulty one. The
distinguishing features of ei and Ef (i) can be visualized in

52 VOLUME 3, 2022

the self-repairing process.

Eqt(i) = (ai ⊕ bi) + (ai ⊕ Cin) (6)

ei = Si � Ci ⊕ Eqt(i). (7)

As each output bit is tested separately in the proposed
design, the detected fault will easily be localized due to the
distributed checking mechanism. Moreover, it is possible to
have a shared propagate and generate signal in CBL because
each respective sum-bit and carry-bit is self-checking with
respect to their internal functionality. However, the prop-
agate signal cannot be shared with the SG because there
is a possibility that the faulty propagate signal will affect
the sum-bit and carry-bit together. It should be noted that
the technique to compare the sum-bit and carryout-bit has
been presented in [15] for ripple carry adder, whereas it
has not been examined for CLA. The basic architecture
of self-checking multiplexer (MUX) design was introduced
in [16], which has been improved with reduced transistor
count in [17]. To limit the area-overhead of our proposed
design, the self-checking MUX and OR gate are implemented
using the design presented in [17].

C. PROPOSED SELF-REPAIRING CLA WITH PARTIAL
RECONFIGURATION
Typically, in self-repairing designs based on hot-standby
approach, a faulty module is replaced by a functioning one.
The implementation of this approach is easy for adders
whose internal carry bits are generated by inter-connected
circuitry, and therefore, the input bits of a faulty module can
be simply shifted to the spare one. However, the complexity
of the shifting process is high for adders using independent
circuits to generate internal carry bits. This is because the
circuit linked to the carry of the respective faulty module
should be replaced with the next available CG in such a way
that each CG of CBL should be aware of the shift operation.
This awareness cannot be achieved without modifying the
circuitry because each carry-bit has a unique equation. For
example, the logic circuit to generate C2 requires the signal
G0, G1, G2, P0, P1 and P2 as in (4). Suppose C1 gets faulty,
then the values of G1, G2, P1, and P2 should be modified
so that the circuitry for generating C2 becomes equivalent to
that of C1. A simple shift operation is insufficient as it can
only modify G2 and P2. Therefore, a partial reconfiguration
is required with the shift operation so that the hot-standby
approach becomes applicable for adder having independent
carry circuits, such as the CLA.
It has been observed that during the shifting process, if

the operands of the faulty module of CBL is set to 0 and
1, then the propagate and generate signal for that position
will be set to 1 and 0, respectively. By doing this, the logic
cell of each CG module proceeding to the faulty one will
be modified because the portion of their circuitry handling
the propagates and generate signal of the faulty module will
become null and void with 1 and 0 values. Consider again
the previously stated example of a faulty C1, the signals

G2 and P2 have already been modified due to the shifted
input values, whereas the signals G1 and P1, which depend
on the input values of the faulty module will be set to 0
and 1, respectively. Hence the operation of (4) will become
equivalent to (3) and the shift operation required for the hot-
standby approach will be achieved. This process is called
“partial reconfiguration” because the logical operation of
CG modules has been modified by deactivating parts of the
circuit.
A 4-bit self-repairing CLA using the proposed approach is

shown in Fig. 2. As stated, ei represents the individual error
of the SG/CG pair, it is therefore used to update the input
bits of the faulty module to 1,0 and also to divert the input
carry of the faulty module to the next SG. Since the logic
cell of each CG has already been modified, the positions
of all other proceeding carry-bits will remain unchanged.
Whereas Ef represents the universal error, whose value is
a function of all individual ei. Ef will be high for all SGs
after the faulty one, whereas its value remains low for all the
SGs prior to the faulty one. Therefore, it is used to control
the shift operation of the input and output bits. CGX and
SGX in Fig. 2 are the spare modules that are used during
the recovery process.

III. PERFORMANCE COMPARISON
The proposed approach has been compared in terms of
area, fault coverage, and latency with the recently reported
approaches for self-checking and -repairing CLA.

A. AREA OVERHEAD
The area overhead mainly depends on the implementation
approaches. In conventional CLA designs, the implementa-
tion is carried out with shared logic. However, shared logic is
not encouraged in self-checking approaches because the fault
in the shared logic will get masked. Therefore, each block in
our proposed approach is implemented with an independent
logic circuit, which inevitably increases the area overhead.
However, it can be optimized at the transistor level by using
approaches like pass transistors.
In this paper, the area overhead is compared in terms of

gate counts. Since each NAND gate requires 4 transistors,
for a fair comparison, the NAND equivalent circuit of each
module based on transistor count is computed and compared
with similar approaches used in [12] and [13]. For example,
an XOR gate and a self-checking MUX can each be imple-
mented using six transistors [17]. Therefore, each pair of
XOR gates and self-checking MUXs have been considered
equivalent to three NAND gates. Similarly, two NOT gates
are equivalent to one NAND gate and a pair of self-checking
OR gate is equal to three NAND gates. The required gate
count for CBL is computed by converting the equation of
each carry bit to its NAND equivalent form as presented
in (8). Since the number of spares in our proposed self-
repairing CLA can vary depending on the application, the
gate count is therefore computed with and without spare

VOLUME 3, 2022 53

AKBAR et al.: SELF-REPAIRING CLA WITH HOT-STANDBY TOPOLOGY

FIGURE 2. The proposed architecture of 4-bit self-repairing CLA.

TABLE 1. NAND Gate required for SBL and CBL of a 4-bit self-checking and
-repairing CLA.

modules. In both cases, the required number of gates for
MUX is included in SBL, as shown in Table 1.

Ci = Gi · PiCi−1. (8)

The overall area overhead for different designs with dif-
ferent input bit-width (adder size) is shown in Table 2. Our
proposed approach with multiple error detection and local-
ization feature requires only 69.6% area overhead compared
to the conventional CLA without self-checking. While due
to the use of MUX as a shifter, the resultant area over-
head of our proposed single spare based self-repairing CLA
increased to 161.5%, which is 35.3% less than the previously
reported partial self-repairing CLA [13]. Note that for a sin-
gle spare case, the area overhead of the spare module will
only be counted once for each size of an adder.

B. LATENCY
The main advantage of CLA is its speed. Ideally, the delay of
CLA only depends on the last CG and SG module as shown
in (9). This superiority will disappear if the speed of CLA
degrades to a similar level as that of a ripple carry adder.
The generation of redundant carry bits in [13] caused their

TABLE 2. Comparison results of the area overhead in terms of NAND gate count.

architecture to be two times slower than the conventional
CLA because the two redundant carry bits with shared logic
and dependent circuitry require the same time as that of two
internal carry bits generated by a ripple carry adder. The
additional delay is caused by the voter circuitry because the
internal carry will not be delivered to SG until the voter
decides the final carry out. In contrast, the latency for our
self-checking CLA is the same as that of a conventional
CLA because the checking mechanism does not interrupt the
circuit operation whereas, the latency will increase for self-
repairing CLA because of the shift operation. The critical
path for the worst case when a fault is detected in the first
SG/CG pair is shown in Fig. 3.
The MUX needs to update the input values because of the

detected fault; in the meantime, error signal Ef will also be
forwarded to the spare module. However, SGX needs to wait
for the carry bit C3 to produce the sum-bit (Sx). The final
sum-bit is obtained after an additional delay of a MUX that
is responsible for shifting the output bits, while CG3 and
CGX will generate the carry out in parallel. Therefore, the
block delay is increased to five MUXs, one SG and (n-2)

54 VOLUME 3, 2022

FIGURE 3. The critical path for the Self-Repairing CLA.

OR gate delay, as expressed in (10); where n is the size of
adder for a single spare case. In the case of having a spare
module for each block, n will be equal to the size of the
block because the universal error signal (Ef) of each block
will remain localized. For instance, with 4-bit block size, the
delay overhead is 5-MUX + 2-OR + 1-XOR gate, which
will remain constant irrespective of the adder’s size due to
the parallel operation of all the blocks of CLA.

TCLA = TSCHCLA = 1SG+ 1CGlast (9)

TSRCLA = TCLA + 5MUX + (n− 2)OR+ 1SG. (10)

C. FAULT COVERAGE
For the state-of-the-art design [13], fault recovery is limited
to CBL, while the fault in SBL is indicated by a parity
prediction approach. Our proposed approach however, can
detect multiple faults at a time with the condition that each
MUX, OR and the CG/SG pair should not have more than
one fault at a time. Due to the distributed self-checking
mechanism, the proposed approach will not only detect the
faults but can also provide fault localization. It can even be
adopted in CLA circuits built by using standard look-ahead
carry generator chips because it only requires an equiva-
lence tester and a checker circuitry, which can be connected
externally. Moreover, it can detect the occurrences of both
temporary and permanent faults.
The self-repairing part is not limited to the CBL but also

covers the faulty SG/CG module pair by replacing it with
the spare one. However, the proposed hot-standby approach
is able to recover the faults which can be detected by the
checker present in SG module. While the checker can only
detect the fault if any one of the Si, Eqt(i) and Ci bits is
faulty, whereas if any two of them gets faulty then the fault
may or may not be detected. In order to further evaluate
the self-repairing characteristics of our proposed architec-
ture, we consider four cases such that in each of them the
fault targets a particular module of the design. It should
be noted that in digital systems some faults get internally

masked and could not affect the final output due to the inher-
ent self-repairing ability of the circuit. These faults are not
considered in this research for evaluating the fault correction
ability. Moreover, each concerned component can produce
single bit output, therefore the fault occurrence indicates that
the output bit is inverted of its actual value. With this con-
cept the resultant output of two sequentially connected faulty
modules is always a non-faulty one because the first faulty
module produces inverted output which is either masked or
produces erroneous output from the next sequentially con-
nected module. If the second module is also faulty and the
output is affected by the previous fault, then it will produce
inverted bit of the erroneous output as a result the output
bit of the second module is corrected automatically.
Case-1 Fault in SG: There are three sub-modules in SG

which are responsible for producing Si, Eqt(i) and ei bits. The
fault stuck to any of them will be detected and recovered
effectively by the proposed approach.
Case-2 Fault in CG: The output of the CG is fed to

the respective SG for checking. Any fault in CG will be
detected by the checker of the SG and therefore the recovery
is possible for this case.
Case-3 Fault in Carry-Bypass-MUXs: The carry-bypass-

MUXs (CBM) are responsible to divert the input carry of the
faulty module to the next SG module, as shown in Fig. 2. If
the fault stuck to any CBM then it will produce erroneous
Ci−1 value for the connected SG module. However, the faulty
Ci−1 can only effect the Si and Eqt(i) bits. Whereas, the
carry-bit (Ci) which needs to be compared with the Si bit
remain valid because each carry-bit in CLA is produced with
independent circuitry. The truth table of SG module in the
presence and absence of the faulty Ci−1 bit is shown in
Table 3, where half of the faulty cases cause by the CBM is
detected effectively by the SG. Hence, the fault correction
will be reduced to 50% because the SG module cannot detect
all the faults occurred in Si and Eqt(i) bits, simultaneously.
The main reason of having undetected faults is because

both Si and Eqt(i) bits are produced by using single Ci−1 bit
received. This limitation can be solved, if both Si and Eqt(i)
bits use different Ci−1 bit which is possible because each
self-checking MUX produce dual output that is the inverted
and non-inverted output using independent circuitry. With
this slight modification, the Ci−1 bit can only be used for
computing Eqt(i) bit, whereas the Si bit will be computed
using the inverted value of Ci−1, i.e., Ci−1. The equation
for the sum-out bit will also be modified as shown in (11),
but the fault recovery will become feasible for all possible
single event upset occur in CBM because a fault in Ci−1 bit
can only effect Eqt(i), whereas the Si bit will remain valid
and vice versa.

Sum = A⊕ B� Ci−1. (11)

Case-4 Fault in Other Components: The input/output
shifter MUXs along with the OR gate in SG module are
self-checking which means that the fault can be detected
but without recovery. Fault recovery is not considered for

VOLUME 3, 2022 55

AKBAR et al.: SELF-REPAIRING CLA WITH HOT-STANDBY TOPOLOGY

TABLE 3. Functionality of SG module with and without faulty Ci−1 bit.

these components due to the area constraints. It is possible
to replace the self-checking MUX with the self-repairing one
presented in [18]. Although the design in [18] is not com-
pletely self-repairing but it can effectively handle multiple
fault conditions. Another possible way is to perform re-
computation for recovering the temporary faults which in
turn will increase the time penalty of the system.
Apart from the above mentioned cases, the proposed

repairing approach is limited by the number of spare mod-
ules, which can be increased based on the application so that
each block has its own available spare module. The block-
wise distributed-spare modules ensure that if any block fails
to perform self-repairing, the rest of the blocks will remain
self-repairing. For example, we can divide a k-bit adder into
m-blocks, where each block performs 4-bit addition with a
single spare module. It means five SG and five CG modules
are present in each block. Assuming x random faults are
introduced in the adder, the probability of having y faults (y
is in the range of 0 to 5) in the same block can be calculated
by (12), where Pbf is the probability of block failure. Note
that for a single spare design, the block with y > 1 can-
not be repaired. Therefore, the probability of block recovery
(Pbr) can be computed by (13). The probability of complete
failure (Pcf) when each block has y > 1 is given by (14).
It should be noted that the self-checking property of the
adder will always remain valid whether the self-repairing is
functioning or not.

Pbf =

(
5

y

)
×

(
5(m− 1)

x− y

)
(

5m

x

) (12)

Pbr = 1 −
10 ×

(
5(m− 1)

x− 2

)
(

5m

x

) (13)

Pcf = Pbf × m (14)

The probability of fault recovery and complete failure
when 2 out of 3 faults occur in the same block is shown in
Table 4. The probability of block recovery increases with the
size of the adder, and for a 64-bit adder, the probability of
fault recovery reaches 99.1%. The improved reliability with

TABLE 4. Probability of fault recovery for x = 3 and y = 2.

the size of an adder is because of the increased number of
blocks; thus more spare modules can be utilized.

D. VERIFICATION
The proposed approaches and the conventional design of rip-
ple carry adder and CLA are implemented using the standard
180nm process. The simulation results for the area, power,
and delay are obtained using 1.8V supply. The delay of
the proposed approaches is compared with the ripple carry
adder and CLA. The reason of selecting ripple carry adder is
because the delay of self-repairing CLA is higher than CLA,
therefore it is essential to check the efficiency as compared
to conventional ripple carry adder.
Using (9), the delay of the proposed self-checking 64-bit

CLA is estimated to be equal to the delay of the conven-
tional CLA, which is 50.9% less than that of RCA. For
the proposed 64-bit self-repairing CLA, the delay over-
head is increased to 20.9% as compared to conventional
CLA. Although, the delay efficiency is still 40.7% better
as compared to conventional ripple carry adder design, as
shown in Table 5. In terms of area, the proposed 64-bit
self-checking CLA requires 54.6% overhead when compared
to conventional CLA, while the area overhead of a similar-
sized self-repairing CLA is estimated to be 160.5%. In terms
of power consumption, the proposed 64-bit self-checking
architecture requires an overhead of 40.9% compared to the
conventional CLA; while the same-sized self-repairing archi-
tecture requires an overhead of 154.5% over the conventional
CLA. The simulation results validates the manually estimated
area overhead and performance efficiency of the proposed
self-checking and -repairing CLA design.

IV. CONCLUSION
In contrast to the traditional approach of using par-
ity prediction for designing self-checking CLA, a novel

56 VOLUME 3, 2022

TABLE 5. Simulation results of area, power, and delay for conventional ripple carry adder, CLA, proposed self-checking and -repairing CLA.

approach of detecting and localizing faults in CLA architec-
ture is presented. The designed approach used the concept
of self-checking and fault localization full adder in which
the fault is detected by comparing the input and output bits.
The proposed 64-bit self-checking CLA requires 69.6% more
area than conventional CLA, whereas it can detect and local-
ize multiple faults at a time with the condition that a single
module should not have more than one fault at a time.
A hot-standby approach along with a novel partial recon-

figurable approach is adopted for self-repairing CLA. The
proposed self-repairing CLA approach with single spare
requires 161.5% more area than CLA which is 35.3% less
as compared to the previously reported approach. The relia-
bility and fault coverage are also higher than the previously
reported approach. A 64-bit CLA with 16 blocks can recover
3 consecutive faults with 99.1% probability with the condi-
tion that each block has a single spare module. Moreover, the
self-checking property of the circuit remains valid whether
the recovery is possible or not. The power consumption of a
64-bit self-checking CLA is 40.9% more than conventional
CLA design, whereas the overhead is further increased to
154.5% for the respective size of self-repairing CLA.
The time latency of conventional CLA will not be

affected with the proposed self-checking approach because
the checker is not affecting the actual computation process.
Whereas, the latency of the proposed self-repairing approach
is increased to the summation of one SG, five MUXs and
(n-2) OR gate delays as compared to conventional CLA. The
simulation results demonstrate that the delay efficiency of a
64-bit self-repairing CLA design is 40.7% higher than that
of ripple carry adder.

REFERENCES
[1] F. Tang, A. Bermak, and Z. Gu, “Low power dynamic logic circuit

design using a pseudo dynamic buffer,” Integration, vol. 45, no. 4,
pp. 395–404, 2012.

[2] N. Mehdizadeh, M. Shokrolah-Shirazi, and S. G. Miremadi,
“Analyzing fault effects in the 32-bit OpenRISC 1200 microprocessor,”
in Proc. 3rd Int. Conf. Avail. Rel. Security, 2008, pp. 648–652.

[3] A. Meixner, M. E. Bauer, and D. J. Sorin, “Argus: Low-cost, com-
prehensive error detection in simple cores,” in Proc. 40th Annu.
IEEE/ACM Int. Symp. Microarchit., 2007, pp. 210–222.

[4] H. G. Kang and T. Sung, “An analysis of safety-critical digital
systems for risk-informed design,” Rel. Eng. Syst. Safety, vol. 78,
no. 3, pp. 307–314, 2002.

[5] J. E. Smith and P. Lam, “A theory of totally self-checking system
design,” IEEE Trans. Comput., vol. C-32, no. 9, pp. 831–844,
Sep. 1983.

[6] A. G. Ganek and T. A. Corbi, “The dawning of the autonomic
computing era,” IBM Syst. J., vol. 42, no. 1, pp. 5–18, 2003.

[7] T. Koal, D. Schiet, and H. T. Vierhaus, “A concept for logic self repair,”
in Proc. 12th Euromicro Conf. Digit. Syst. Design Archit. Methods
Tools, Aug. 2009, pp. 621–624.

[8] M. P. Kumar and M. Kiran, “Design of optimal fast adder,” in Proc.
IEEE Int. Conf. Adv. Comput. Commun. Syst., 2013, pp. 1–4.

[9] M. Nicolaidis, “Carry checking/parity prediction adders and ALUs,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11, no. 1,
pp. 121–128, Feb. 2003.

[10] E. S. Sogomonyan, V. Ocheretnij, and M. Gossel, “A new code-disjoint
sum-bit duplicated carry look-ahead adder for parity codes,” in Proc.
10th Asian Test Symp., Kyoto, Japan, 2001, pp. 365–370.

[11] M. Valinataj, “A novel self-checking carry-lookahead adder with
multiple error detection/correction,” Microprocess. Microsyst., vol. 38,
no. 8, pp. 1072–1081, 2014.

[12] M. Valinataj, “Fault-tolerant carry look-ahead adder architectures
robust to multiple simultaneous errors,” Microelectron. Rel., vol. 55,
no. 12, pp. 2847–2857, 2015.

[13] M. Valinataj, “Enhanced multiple-error resilient carry look-ahead
adders through new customized fault-tolerant voters,” Microelectron.
Rel., vol. 96, pp. 7–20, May 2019.

[14] P. Balasubramanian, C. Dang, D. L. Maskell, and K. Prasad,
“Approximate ripple carry and carry-lookahead adders a compara-
tive analysis,” in Proc. 30th IEEE Int. Conf. Microelectron. (MIEL),
2017, pp. 299–304.

[15] M. A. Akbar and J.-A. Lee, “Self-repairing adder using fault
localization,” Microelectron. Rel., vol. 54, nos. 6–7, pp. 1443–1451,
2014.

[16] D. P. Vasudevan, P. K. Lala, and J. P. Parkerson, “Self-checking carry-
select adder design based on two-rail encoding,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 54, no. 12, pp. 2696–2705, Dec. 2007.

[17] M. A. Akbar, B. Wang, and A. Bermak, “Self-repairing hybrid adder
with hot-standby topology using fault-localization,” IEEE Access,
vol. 8, pp. 150051–150058, 2020.

[18] A. K. Neelam and S. Musala, “Real-time self repairable multiplexer
for fault tolerant systems,” in Proc. IEEE Int. Conf. Commun. Signal
Process. (ICCSP), 2020, pp. 1124–1127.

MUHAMMAD ALI AKBAR received the B.Eng.
degree (Hons.) in electronic engineering from
NED University, Karachi, Pakistan, in 2011, and
the M.Sc. degree in computer engineering from
Chosun University, South Korea, in 2014. He is
currently pursuing the Ph.D. degree in computer
engineering with Hamad Bin Khalifa University,
Qatar.

In 2014, he joined Qatar University as a
Research Assistant to work on different research
project related to hardware design and machine

learning applications. His main research focus was on fault localization,
self-reliable systems, sensor design, and artificial intelligence.

VOLUME 3, 2022 57

AKBAR et al.: SELF-REPAIRING CLA WITH HOT-STANDBY TOPOLOGY

BO WANG (Member, IEEE) received the B.Eng.
degree (Hons.) in electrical engineering from
Zhejiang University, Hangzhou, China, in 2010,
and the M.Phil. and Ph.D. degrees in electronic
and computer engineering from The Hong Kong
University of Science and Technology (HKUST),
Hong Kong, in 2012 and 2015, respectively.
In 2015, he joined HKUST as a Postdoctoral
Researcher and led the HKUST-MIT Consortium
Project on wireless sensing node design for smart
green building applications. Afterwards, he was

with the Massachusetts Institute of Technology in 2016, on low power data
converter design for this project. In 2017, he joined Hamad Bin Khalifa
University, Qatar Foundation, as a Founding Faculty, where he is currently
an Assistant Professor with the Division of Information and Computing
Technology, College of Science and Engineering. His research interests
include energy-efficient analog mixed-signal circuits, sensor and sensor
interface, and heterogeneous integrated systems for in vitro/vivo health
monitoring. He was a recipient of the IEEE ASP-DAC Best Design Award
in 2016. He serves as a Technical Committee Member of the IEEE CAS
Committee on sensory systems.

AMINE BERMAK (Fellow, IEEE) received the
master’s and Ph.D. degrees in microelectronics
and microsystems from Paul Sabatier University,
Toulouse, France, in 1994 and 1998, respectively.

He joined the ECE Department, Hong Kong
University of Science and Technology (HKUST),
where he held all academic ranks and subsequently
promoted to a Full Professor. He was also an ECE
Associate Head for Research and Postgraduate
studies. He is currently with Hamad Bin Khalifa
University, Qatar Foundation, Qatar, holding a Full

Professor Appointment as well as an Associate Dean. He taught 25 different
courses at the undergraduate and postgraduate levels. He is recognized as
the world-leading author in the sensors area as well as the inventor of time-
domain sensing. He has graduated 25 Ph.D.’s and 20 master students. He
has published over 350 articles in journals, book chapters and conference
proceedings and designed over 30 chips.

Prof. Bermak has received six distinguished awards, including the
2004 IEEE Chester Sall Award from IEEE Consumer Electronics Society,
the IEEE Service Award from IEEE Computer Society, the Best Paper
Award at the 2005 International Workshop on System-On-Chip for Real-
Time Applications, the Best Student Paper Award at IEEE International
Symposium on Circuits and systems ISCAS 2010, and the Best University
Design Contest Award at ASP Design Automation Conference, Macau,
in 2016. For his excellence and outstanding contribution to teaching, he
was nominated for the 2013 Hong Kong UGC Best Teacher Award (for
all HK Universities). He is a recipient of the 2011 University Michael
G. Gale Medal for distinguished teaching (the Highest University-wide
Teaching Award). He is also a two-time recipient of the Engineering School
Teaching Excellence Award in HKUST for 2004 and 2009, respectively.
He has served on the editorial board of IEEE TRANSACTIONS ON VERY

LARGE SCALE INTEGRATION (VLSI) SYSTEMS and the Sensors Journal.
He is also currently serving on the editorial board of IEEE TRANSACTIONS

ON BIOMEDICAL CIRCUITS AND SYSTEMS and the IEEE TRANSACTIONS

ON ELECTRON DEVICES. He is also an editor for Nature Scientific Reports.
He is an IEEE Distinguished Lecturer.

58 VOLUME 3, 2022

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

