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Abstract—This paper presents the time-domain analysis of a
fully differential incremental ∆Σ modulator. Particularly, the
influence of the bipolar feedback signal on the quantization
noise of the modulator is analyzed, which is overlooked in most
IDC designs. Based on the analysis, an initial feedback zeroing
scheme is introduced to decrease the quantization noise of the
modulator. Moreover, the maximum number of output codeword
that can be produced by the modulator is mathematically derived.
Following the derivation, a control scheme is proposed to achieve
1.5-bit effective feedback without changing the quantizer and
D/A topology. By applying the initial feedback zeroing and 1.5-
bit feedback technique, quantization noise of the 1st- and 2nd-
order modulators analyzed in this paper can be decreased by
4×, with very minor modifications on the modulator’s original
digital controllers.

Index Terms—incremental delta-sigma analog-to-digital con-
verter, fully differential IDC, 1.5-bit feedback, modulator code-
word, time-domain analysis

I. INTRODUCTION

Incremental analog-to-digital converters (IDCs) are popular
for many of today’s instrumentation and process control appli-
cations that need to convert the analog output of a sensor for
processing or storage purposes [1], [2]. To increase the input
dynamic range and to obtain the maximum noise and common-
mode rejection, most IDCs adopt the fully differential input
structures instead of the single-ended or pseudo-differential
ones [3], as shown in Fig. 1.

A typical 1st-order fully differential incremental ∆Σ mod-
ulator is shown Fig. 2. For a normalized Vin∈[−1, 1], the
feedback must be bipolar (±1) as well for signal balancing [1].
Conventionally, this fully differential modulator is analyzed
in a similar way as its single-ended counterpart without
considering their different feedback characteristics [4]. This
may cause flaws in the actual design. Firstly, without special
control schemes, the feedback signal range is 2 in a fully
differential modulator, less information can be encoded in each
quantization cycle [5]. It then requires more cycles to achieve
the same quantization noise as that of a single-ended topology.
Therefore, the modulator’s efficiency is degraded amid an
improved input common-mode rejection. Moreover, it is often
mentioned in the literature (and is true) that the IDC needs to
be reset before each conversion [1], while detailed analysis has
not been performed on the modulator dynamics right after this
reset operation, especially for the fully differential topology.

IN A/D
0

vcm

vref

(a)

IN+

IN-
0

vcm

vref

A/D

(b)

IN-

IN+

0
vcm

vref
0

vcm

vref

A/D

(c)

0

Fig. 1. Typical unipolar A/D input structures: (a) single-ended input; (b)
pseudo-differential input; (c) fully differential input.
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Fig. 2. Model of a 1st-order fully differential incremental ∆Σ modulator using
1-bit quantizer and delaying integrator, with its simplified timing diagram and
a typical feedback implementation.

In this paper, the time-domain operation of a fully dif-
ferential incremental modulator (1st- and 2nd-order) is revis-
ited. Particularly, the influence of bipolar feedback on the
quantization noise of the modulator is analyzed. Based on
the analysis, an initial feedback zeroing control scheme is
introduced to improve the modulator performance. Moreover,
the maximum number of codeword that can be produced by
an ideal modulator is mathematically derived. Guided by the
derivation, a control scheme is proposed to achieve 1.5-bit
effective feedback without changing the D/A design. Using
the proposed initial feedback zeroing and 1.5-bit feedback
control, the theoretically minimum quantization noise of a
fully differential modulator can be achieved. To implement the
control schemes, only minor modifications on the conventional
IDC’s digital controller are required.

II. FIRST-ORDER FULLY DIFFERENTIAL MODULATOR

In the rest of this paper, signals are all normalized against
the IDC’s reference signal and the modulator output is decoded
with an ideal filter.
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A. Operation of The Modulator

As shown in Fig. 2, the modulator works in its transient
mode and is reset before each conversion. It then operates for
N quantization cycles (clkq) to generate a digital bitstream
q, which can be used to estimate the actual input vin using a
digital filter. For IDCs, N is defined as the oversampling ratio
(OSR). The quantizer in Fig. 2 is defined as

q[n] =

{
1 u1[n] > 0,
−1 u1[n] < 0, n > 1.

(1)

After reset, the initial integrator output u1[0] is 0. At the nth

quantization cycle, u1[n] satisfies a discrete-time difference
equation of

u1[n] = u1[n− 1] + vin − q[n− 1], n > 1. (2)

By simplifying the recursive relationship (2),

u1[n] = n · vin −
n−1∑
i=0

q[i] , n · vin − sn, n > 1, (3)

where sn is the running sum of q[0:n–1]. Refer to (1), the
quantizer is comparing u1[n] with 0 and the digital output of
the modulator is

q[n] =

{
1 vin > sn/n,
−1 vin < sn/n, n > 1.

(4)

One can derive the modulator’s digital output sequence fol-
lowing (3)(4) for any input signal.

B. Initial Feedback Zeroing

For single-ended IDC with unipolar feedback, q[0] is 0
after reset. However, for fully differential IDC, the effective
quantizer output q[0] is −1 after reset in typical feedback
implementations (see Fig. 2 or [6], [7]). Without special timing
control, a feedback signal of +1 will be integrated in the first
cycle, along with vin. This seems to be trivial as the modulator
loop can react correspondingly to achieve signal balancing
over time and ensure u1[n]∈[−1, 1]. That is why almost no
fully differential IDC designs have taken this initial non-zero
feedback seriously. Indeed, it will greatly affect the modulator
dynamics and degrade the modulator performance as analyzed
below.

For an OSR of N , {n ∈ Z+, 1 6 n 6 N} holds in (3) and
(4). Meanwhile,

sn+1 =

{
sn + 1 q[n] = 1,
sn − 1 q[n] = −1, n > 1.

(5)

Refer to (4), the modulator is essentially comparing vin to
a series of thresholds sn/n to generate the digital outputs.
For example, if vin = 1/4 and s1 = q[0] = −1, in the first
quantization cycle, (1/4) > (−1/1), therefore q[1] = 1. In
the second cycle, (1/4) > (0/2), q[2] = 1. In the third cycle,
(1/4) < (1/3), q[3] = −1, and so on and so forth to produce
an N -bit bitstream. For a certain range of inputs, the same
output sequence will be generated. This sequence is called a
codeword (the more the better), the corresponding input range
is its code length [8], and the start and end value of this input

TABLE I
ALL POSSIBLE VALUE OF sN IN EACH QUANTIZATION CYCLE WITH N = 8,

FOLLOWING EQ. (5).

n 1 2 3 4 5 6 7 8
sn -1†

(0) -2(-1) -3(-2) -4(-3) -5(-4) -6(-5) -7(-6) -8(-7)

0(1) -1(0) -2(-1) -3(-2) -4(-3) -5(-4) -6(-5)

1(2) 0(1) -1(0) -2(-1) -3(-2) -4(-3)

2(3) 1(2) 0(1) -1(0) -2(-1)

3(4) 2(3) 1(2) 0(1)

4(5) 3(4) 2(3)

5(6) 4(5)

6(7)

†: The footnote numbers are sn with q[0] = 0 (with zero initial feedback).
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Fig. 3. Transfer curve of a 1st-order fully differential incremental ∆Σ
modulator with (a) q[0] = −1 and (b) q[0] = 0, with N = 6.

range are called code transition points. These transition points
are all expressed in the form of sn/n, where

sn =
n−1∑
i=0

q[i] ∈ Z, and (6)

q[0]− (n− 1) 6 sn 6 q[0] + (n− 1). (7)

Theoretically, 2×(n−1) more new sn/n values or transition
points will be introduced at the nth quantization cycle accord-
ing to (7). However, as sn and n are not always mutually prime
and repeated sn/n values could occur, less new transition
points result. As an example, Table I lists all the possible
values of sn in each quantization cycle with N = 8 and
s1=q[0]=−1. When n = 6, only two new transition points
(±4/6) are introduced. To derive more codeword, the number
of common divisors between sn and n must be minimized.
Since the parity of sn at the nth cycle depends on q[0] (see
(7) or Table I), by blocking (or zeroing) the feedback signal
during the first integration cycle, namely q[0] = 0, sn will be
odd when n is even, and vice versa (see Table I). In this way,
the total number of codeword can be increased.

The simulated transfer curve of a fully differential 1st-order
incremental ∆Σ modulator with q[0] = −1 and q[0] = 0 is
shown in Fig. 3. It can be observed that finer quantization steps
and more codewords result when the initial feedback is zeroed.
It also halves the dead-zone of the modulator. For different
OSR, the total number of codeword and output mean squared
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Fig. 4. The total number of codeword of the 1st-order fully differential
modulator with different initial feedback and OSR.
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Fig. 5. Output MSE of the 1st-order fully differential modulator with different
initial feedback and OSR.

error (MSE) are shown in Fig. 4 and Fig. 5, respectively. Here
the output MSE is calculated via [9]

MSE = E[(vin − v̂in)2] =

Ncode∑
i=1

(
∆i

2
· ∆2

i

12
), (8)

where Ncode is the total number of the output codeword, ∆i is
the code length of the ith codeword. Though seems trivial, the
initial feedback signal greatly affects the modulator dynamics
and 3.4× lower quantization noise can be obtained by zeroing
this feedback.

C. Inherent 1.5-bit Feedback
Based on the above analysis, at the nth quantization cycle,

only if sn and n are mutually prime, new sn/n values can be
generated. Therefore, the total number transition points can be
derived with the help of the Euler’s totient function ϕ(n) [10].
Firstly, the quantization cycle n can be expressed with

n = pk1
1 · p

k2
2 · p

k3
3 · · · p

kr
r , (9)

where p1 ∼ pr are prime numbers, and k1 ∼ kr ∈ Z+ are their
exponents, respectively. Then, ϕ(n) is

ϕ(n) =
r∏

i=1

pki−1
i (pi − 1). (10)

Because sn is bipolar and considering the three extra transition
points (±1, 0), the total number of transition points TN for an
OSR of N is

TN = 2
N∑

n=2

ϕ(n) + 3. (11)
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Fig. 6. Output MSE of the 1st-order fully differential modulator: generic
topology and with the proposed initial feedback zeroing and 1.5-bit feedback.

This value is a rigorous theoretical calculation instead of an
estimation as in [8]. For example, for an OSR of 300, the
maximum number of codeword that can be generated by a
1st-order fully-differential modulator is T300 − 1 = 54796.
However, as shown in Fig. 4, even with initial feedback
zeroing, the number of output codeword is still far less than
this value. The reason is that compared with a single-ended
topology, not all the transition points can be hit in a fully
differential design due to its wide feedback range. Specifically,
when n is odd, all the transition points with sn being odd are
not generated (see Table I with q[0] = 0).

To retrieve all these transition points and fully utilize the
modulator, different feedback signals can be applied to the
modulator based on the status of sn and the integrator output
u1[n]. Herein, a 1.5-bit inherent feedback is proposed with

feedback =


1 u1[n] > 0 and sn > 0;

0
u1[n] > 0 and sn < 0,

or u1[n] < 0 and sn > 0;
−1 u1[n] < 0 and sn 6 0.

(12)

This feedback scheme can be achieved with minor modifi-
cations from the conventional 1-bit D/A topology by adding an
accumulator to calculate sn. This accumulator can be shared
by the digital filter (e.g., CIC filter [1]) for resource savings.
Using the initial feedback zeroing and the 1.5-bit feedback
scheme, all the possible transition points TN shown in Fig. 4
can be hit thus the best modulator performance (encoding effi-
ciency) can be achieved. Fig. 6 shows the simulated MSEs of
the modulator for different OSRs. Compared with the generic
topology, 4× lower quantization noise results. Fig. 7 shows
an exemplary feedback control implementation using standard
logic gates. Worthy to mention that other implementations that
can achieve zeroed initial feedback and satisfy (12) will also
work.

D. Digital Filtering
To convert the high data-rate digital bitstream q to the

desired multi-bit output, a digital filter and OSR-to-1 decima-
tor are required [11]. After the above control modifications,
classical filters, such as the sinc and cascade-of-integrator
filters, still apply as the modulator follows the signal balancing
property [12].
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Fig. 8. A typical model of a 2nd-order incremental ∆Σ modulator.

III. FOR HIGHER-ORDER FULLY DIFFERENTIAL
INCREMENTAL MODULATOR

Without loss of generality, a typical 2nd-order fully dif-
ferential incremental modulator shown in Fig. 8 is used to
verify the MSE improvement in higher-order modulators using
the initial feedback zeroing and 1.5-bit feedback scheme. The
time-domain integrator outputs u1[n] and u2[n] can be derived
following the steps introduced in Section II-A, with

u2[n] =
n(n− 1)

2
· vin −

n−1∑
i=0

(n + 1− i)q[i]

, rn · vin − sn, n > 1.

(13)

Different from that of the 1st-order modulator, there are two
clock delays before the actual input vin appears in u2[n]. There-
fore, the feedback signal q[0], q[1] must be all zeroed. This
will result an integrator output u1[2] = 2vin. To avoid overflow,
appropriate signal scaling can be used in real implementations.

Following Section II-C, the maximum number of transition
points for this 2nd-order modulator can also be derived by
analyzing the possible values of rn and sn in (13). Because of
their second-order dependencies on n, the number of transition
points in this case increases rapidly with n but are highly
irregular. As a result, it is mathematically complicated to tick
out the repeated sn/rn values and calculate the precise number
of transition points TN. Herein an upper bound of TN is derived
using the possible values of sn in each quantization cycle, with

TN 6
N∑

n=2

(n− 1)(n− 2) + 3, N > 2. (14)

Fig. 9 and Fig. 10 are the simulated codeword and MSE of this
2nd-order incremental modulator, respectively. The resulted
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Fig. 9. The total number of codeword of the 2nd-order fully differential
modulator with different OSR.
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Fig. 10. Output MSE of the 2nd-order fully differential modulator (input
dead-bands are excluded in the MSE calculation).

MSE is also reduced by 4× compared to its generic topology
thanks to the increased number of codeword.

Worthy to mention that only 1-bit quantizer and delaying
integrators are analyzed in this paper. However, the analysis
presented applies to other modulator typology using a multi-bit
quantizer and/or non-delaying integrator as well. Moreover, the
purpose of all the other popular techniques like higher-order
modulators, MASH topology, residue counting, exponential in-
tegration, etc. were all proposed with the aim of increasing the
number of codeword generated by the modulator. Techniques
proposed in this paper achieves the goal via basic control
modifications.

IV. CONCLUSION

In this paper, a control scheme for the fully differential in-
cremental modulator is proposed after a detailed time-domain
analysis. It is found that the initial status of the feedback would
greatly affect the modulator dynamics but was overlooked by
most of the IDC designs. By adopting an initial feedback
zeroing (blocking) scheme, more codewords can be generated
by the modulator thus lower quantization noise results without
increasing the conversion cycles. Moreover, the maximum
number of codeword that can be generated by the modulator
is mathematically derived. Following this derivation, a 1.5-
bit effective feedback scheme is proposed by using the 1-bit
quantizer. Using the proposed control scheme, the quantization
noise of the modulators that are analyzed in this paper can
be decreased by 4× than their generic typology, which is
theoretically the lowest quantization noise can be achieved.
The proposed control is very straightforward in terms of
silicon implementation as well.
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