BJT Process Spread Compensation Utilizing Base Recombination Current in Standard CMOS

Bo Wang, Man Kay Law, Member, IEEE, Amine Bermak, Fellow, IEEE, and Fang Tang, Member, IEEE

Abstract—This letter presents a compensation topology which minimizes the inter-/intra-die spread and proportional-to-absolute-temperature (PTAT) drift of the base–emitter voltage (V_{be}) of a bipolar junction transistor (BJT). Without using special devices, the base recombination current from a deep-saturated BJT is utilized in this scheme. Before compensation, the V_{be} standard deviation (STD) of 15 standalone BJTs measures 3.24 mV at 25 °C with constant external bias currents. After compensation, V_{be} STD of 30 dies from two batches reduces to 1.8 mV with on-chip bias current. The PTAT drift of V_{be} as that in typical BJT-based designs are also alleviated.

Index Terms—Bipolar junction transistor (BJT) process spread, spread compensation, trimless CMOS voltage reference.

I. INTRODUCTION

Since the non-ideality factor of a bipolar junction transistor (BJT) is closer to unity as compared to that of a diode [1, p. 14], it is preferred in precision bandgap voltage reference (BGR) designs. In typical applications, BGR with a temperature coefficient (TC) of ~30 ppm/°C (e.g., 6.5 mV error from −55 to 125 °C for a 1.2 V output) is sufficient. However, achieving such a performance is a non-trivial task due to the various error sources introduced during silicon fabrication.

BGR error sources such as the amplifier offset, device mismatch and BJT base-emitter voltage (V_{be}) curvature can be mitigated by using circuit techniques like chopping, dynamic element matching and signal linearization [1]. Unfortunately, with a pre-defined collector bias, BJT spreads would introduce a proportional-to-absolute-temperature (PTAT) drift in V_{be} (mainly due to the saturation current I_s spread) [1, p. 29], which ultimately limits the untrimmed BGR precision. [2] attempted to reduce such PTAT drift by utilizing the reverse current gain (β_r) of a BJT. Due to the limited correlation between β_r and I_s, the compensation is sub-optimal with a simulated V_{be} standard deviation (STD) of 2.6 mV at 25 °C. Instead, [3], [4] used pinched base resistors for compensation. However, pinched resistors are no longer supported by modern CMOS processes. This mandates the development of a customized resistor model which is time-consuming and not easy for design transfer.

This letter presents a compensation topology which minimizes the V_{be} spreads of BJTs under different process conditions. Unlike [3], [4], this scheme only exploits the electrical properties of a standard BJT. After compensation, the measured V_{be} STD reduces from 3.24 mV to 1.8 mV at 25 °C, and the PTAT drift in V_{be} is also shown to be well-suppressed, demonstrating the feasibility of the proposed scheme for designing trimless BGRs.

II. BIPOlar SPREAD AND COMPENSATION

A. Process Spread of BJT

The base-emitter voltage of a BJT biased in its forward-active region is [1]

$$V_{be} = V_T \cdot \ln \left(\frac{I_c}{I_s} \right)$$

(1)

where V_T is the thermal voltage; I_c and I_s are the BJT collector bias current and saturation current, respectively. Since $I_s \propto N_b^{-1}$ and N_b cannot be precisely controlled during fabrication (N_b is the BJT base doping concentration) [1, p. 16], I_s can exhibit as large as ±30% inter-/intra-die variation, which introduces a spread of ±0.15 mV in V_{be} at 125 °C. From (1), in order to maintain V_{be} of different dies to be the same at the reference temperature T_r, I_c needs to track the process spread of I_s.

Fig. 1 shows two basic I_s spread compensation topologies for an NPN BJT, where $I_{p1,2}$ are the compensation currents. To minimize V_{be} variation, $I_{p1,2}$ need to satisfy two conditions. Firstly, they must have strong correlation with I_s. Secondly, since the spread of I_s increases with temperature [1, p. 21], the spread of $I_{p1,2}$ needs to increase with temperature as well to achieve compensation over a wide temperature range.

B. Compensation Principle

In this work, a BJT operating in its deep-saturation region (with tens of mV collector-emitter voltage V_{ce}) is exploited...
Its collector current in its deep-saturation region, I_Q, is the intrinsic carrier concentration and I_e for a deep-saturated BJT.

Fig. 2. Minority carrier density profile of an NPN BJT biased in its forward-active (dashed line) and deep saturation (solid line) regions [5, pp. 10–17]. $x = 0$ is the edge of the BE junction depletion layer. W_b is the width of the base neutral region. $n_{DB}(W_b)$ represents the n-type carrier in the p-base region at $x = W_b$.

Fig. 3. The proposed on-chip BJT spread compensation topology utilizing a deep-saturated BJT Q_d.

For I_k spread compensation, Fig. 2 shows the minority carrier density of such an NPN BJT [5, pp. 10–17], where the minority carrier (e-) density in the base region is high but the density of such an NPN BJT [5, pp. 10–17], where the recombination current is performed BJT process compensation. If I_c is designed to have a positive TC, I_k then satisfies the two requirements of the compensation current I_{p2} in Fig. 1 (b).

The proposed compensation topology is shown in Fig. 3, in which V_b is the target I_k spread insensitive voltage. $Q_{1,2}$ are matched vertical BJTs working in their forward-active regions, with an emitter area ratio of $n:\bar{n}$ and the same collector current. Q_d is the deep-saturated BJT with an emitter area of m units. Its collector current I_{cd} contains the aforementioned recombination current I_r for I_k spread compensation. To maintain Q_d in its deep-saturation region, $n:\bar{n}$ is sized to be 4.2 (the V_{be} of Q_d is $V_{be} = V_T \cdot \ln(n/\bar{n})$, about 24 mV at $25^\circ C$). In Fig. 3, by including I_c and I_{cd} spread, V_b is expressed as

$$V_b \approx V_T \cdot \ln \frac{I_{pt} - (I_{cd}\vert_{ideal} + \Delta I_{cd})}{(1 + \alpha) \cdot I_{cd}\vert_{ideal}}$$

where α is the I_k spread coefficient and ΔI_{cd} represents the variation of I_{cd}. For optimal compensation, ΔI_{cd} equal to $-\alpha \cdot (I_{pt} - I_{cd}\vert_{ideal})$. Worthy to mention that, without compensation, $|\partial V_b/\partial I_k| = V_T/I_k$; while after compensation

$$|\partial V_b/\partial I_k| \approx \frac{V_T}{I_k} \cdot \frac{bI_r}{I_{cd}\vert_{ideal} + bI_r} - 1 < \frac{V_T}{I_k}$$

where b (a complex function of BJT bias condition and process [8]) is the fraction of Q_d's base recombination current that flows to its collector. From (4), V_b is less sensitive to I_k after introducing the recombination current I_r.

The design is implemented in the GlobalFoundries 0.18 μm CMOS process. A moderate PTAT bias with $I_{pt} = 100$ nA at $25^\circ C$ is adopted for low power consumption. For effective compensation, m is sized to be 6 units ($5\mu m \times 5\mu m$ unit area), with $I_{cd}\vert_{ideal}$ and ΔI_{cd} equal to 43.6 nA and ∓ 18.6 nA at the fast and slow BJTs corners at $25^\circ C$, respectively. Fig. 4 shows the STD of V_b with and without Q_d compensation from 250 Monte-Carlo simulation runs. It can be observed that V_b exhibits a PTAT drift without compensation. After compensation, the PTAT drift in V_b is suppressed and its maximum STD is reduced by $4.5 \times$ from 3.4 mV to 0.77 mV, with ideal compensation achieved at $70^\circ C$.

III. Verification in Standard CMOS

The complete BJT spread compensation circuitry is shown in Fig. 5 and Fig. 6 shows its die photo. $Q_{1,2,d}$ form the BJT core. $M_{p1,4}$ and $M_{n1,2}$ are for circuit start-up. $M_{p5,7}$ and a native transistor M_{ideal} provide the BJT collector and base currents. $M_{p6,10}$ and $M_{n3,5}$ form a current comparator and error amplifier to generate a pseudo-supply V_b and to equalize $V_{1,2}$, which ensures $Q_{1,2}$ collector current to be the same [7]. $R_{p1,2}$, $M_{p1,12}$ and $M_{p6,7}$ form a peaking current source to bias the error amplifier. In Fig. 5, $Q_{1,2,d}$, $M_{p6,7}$ are common-centroid laid out to minimize their mismatches induced inter-/intra-die V_{be} spread. Meanwhile, R_{pt} used to generate I_{pt} is a composite resistor formed by 6 different resistor types to reduce its overall resistance variation [9].

The V_{be} STD of 15 standalone BJTs measures 3.24 mV at $25^\circ C$ using external bias current. Fig. 7 shows the measured compensated V_b from two batches with on-chip biasing. The corresponding STD reduces to only 1.8 mV at $25^\circ C$ [Fig. 8 (a)], which is about two-fold reduction compared with that without compensation [Fig. 8(b)]. By using an external R_{pt} of 180 kΩ to isolate the resistor spread, the V_b STD further reduces to 1.5 mV at $25^\circ C$. The V_{be} spread of the proposed scheme is $1.4 \times$ and $1.7 \times$ smaller than prior arts that use reverse current gain [2] (simulated) or pinched base resistor [3] (simulated) for compensation, respectively. In contrast to [3] and [4] which still exhibit inter-/intra-die

Fig. 4. Simulated STD of V_b (Fig. 3) with and without using Q_d for compensation at different temperatures from 250 monte-carlo runs.
PTAT spreads, the measured V_b STD is 2 mV at -30 °C and 125 °C, but converges to 1.1 mV at 85 °C. This is consistent with SPICE simulation, demonstrating the feasibility of the proposed scheme for V_{be} PTAT spread suppression. However, I_{pt} can deviate from its nominal value due to various error sources including R_{pt} spread, $Q_{1,2}$, $M_{6,7}$ mismatches etc. The optimal compensation current I_{cd} in (3) then varies, which alters the optimal compensation temperature and increases the uncertainty of V_b. Moreover, in the BJT model, the silicon band gap energy E_g is constant without modeling its temperature dependency and doping induced band gap shift [8, p. 15–258], which degrades the modeling precision as well and enlarges the discrepancy between SPICE and silicon measurements.

IV. CONCLUSION

A BJT process spread compensation method using the base recombination current of a deep-saturated BJT is presented. A detailed compensation current generation principle is outlined, with the dominant error sources of the BJT V_{be} spread explained. We also proposed circuit topology that can minimize the inter-/intra-die V_{be} variation. Measurement results from the prototype chip fabricated using the GlobalFoundries 0.18 μm standard CMOS process show about twofold reduction in V_{be} spread after compensation. It can be concluded that the proposed scheme simplifies the circuit design compared to prior arts and is compatible to mainstream CMOS processes.

REFERENCES